Almost everywhere convergence of Bochner–Riesz means on Heisenberg‐type groups
نویسندگان
چکیده
منابع مشابه
Almost Everywhere Convergence of Cone-like Restricted Double Fejér Means on Compact Totally Disconnected Groups
In the present paper we prove the a.e. convergence of Fejér means of integrable functions with respect to the two-dimensional representative product systems on a bounded compact totally disconnected group provided that the set of indices is in a cone-like set.
متن کاملAlmost Everywhere Convergence of Series in L
We answer positively a question of J. Rosenblatt (1988), proving the existence of a sequence (ci) with ∑∞ i=1 |ci| = ∞, such that for every dynamical system (X,Σ, m, T ) and f ∈ L1(X), ∑∞i=1 cif(T ix) converges almost everywhere. A similar result is obtained in the real variable context.
متن کاملOn Almost Everywhere Convergence of Bochner-riesz Means in Higher Dimensions
In Rn define (TXirf)~(£) = /(£)(! k_1í2l)+If n > 3, A > ¿(n-l)/(n+l)and2 and the associated maximal operators are r;/(x) = suP|(/-(i-Ki2)i)-|(x). r>0 It is conjectured that, when A > 0, T\ is bounded on Lp if and only if pó(A) < p < Po(A), where po(A)...
متن کاملOn Almost Everywhere Strong Convergence of Multidimensional Continued Fraction Algorithms
We describe a strategy which allows one to produce computer assisted proofs of almost everywhere strong convergence of Jacobi-Perron type algorithms in arbitrary dimension. Numerical work is carried out in dimension three to illustrate our method. To the best of our knowledge this is the rst result on almost everywhere strong convergence in dimension greater than two.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the London Mathematical Society
سال: 2020
ISSN: 0024-6107,1469-7750
DOI: 10.1112/jlms.12401